
Introduction to JHipster
Hackathon evening, September 2019

Orestis Palampougioukis



Problem

• A lot of modern web apps have high complexity and 
require:

● Beautiful design
● No page reloads
● Ease and speed of deployment
● Extensive testing
● Robustness and scalability of high-performance 

servers and deployment process
● Monitoring
● ….

Large amount of technologies working in 
sync to achieve all that => huge amount 
of effort into configurations / setting up



JHipster

• Open source platform using Yeoman to generate / 
develop / deploy Spring Boot + front-end web apps

• CLI for initial app generation + subsequent additions of:
● Entities (frontend + backend)
● Relationships
● Spring controllers
● Spring services
● Internationalization
● ...



Goal

• A beautiful front-end, with the latest 
HTML5/CSS3/JavaScript frameworks

• A robust and high-quality back-end, with the latest 
Java/Caching/Data access technologies

• All automatically wired up, with security and 
performance in mind

• Great developer tooling, for maximum productivity 



Client side

• NPM dependency management to install and run client-side tools

• Webpack
● Compile, optimize, minimize
● Efficient production builds

• BrowserSync
● Hot reload

• Testing
● Jest, Gatling, Cucumber, Protractor

• Bootstrap

• Angular / React



Server side
• Spring Boot

● Configured out of the box
● Live reload

• Maven / Gradle

• Netflix OSS
● Eureka - load balancing & failover
● Zuul – Proxy for dynamic routing, monitoring, security
● Ribbon – Software load balancing for services

• Liquibase
● DB source control



Server side
• JPA (Java Persistence API), Spring Data JPA

• MongoDB, Couchbase, Cassandra

• Elasticsearch

• Spring Security

• Thymeleaf (Java templating)

• Monitoring (JVM, app server, Spring Beans, Cache…)

• Docker / Docker-compose fully pre-configured



Monitoring



Monitoring



Deployment / Cloud
• Kubernetes

• Heroku

• AWS

• Boxfuse

• Google cloud

• OpenShift

• CloudFoundry



Sub-generators
• jhipster kubernetes

• Answer a few questions

• Done



Marketplace
• Modules

• Blueprints
 



Blueprints
• Enhance JHipster with new features such as supproting different languages / 

frameworks

• Demonstrate how the main generator behavior can be modified to fit anyone’s 
needs

• Kotlin
● Replaces most Java backend with Kotlin

• Vue.js
● Replaces frontend logic with Vue.js

• .Net

• Node.js
● Replaces Java side with Nest.js framework 



Opinion
• Amazingly efficient for greenfield projects

● Adhering to the generated structure matters

• Cumbersome for projects that need to adhere to pre-
existing structure

● Can still be very beneficial to setup the initial 
configuration

 



Thank you



After dinner :)
• Install Jhipster

● https://www.jhipster.tech/installation/

• Generate a JHipster project with your preferred initial set-up
● https://www.jhipster.tech/creating-an-app/

• Use the generator to create entities
● https://www.jhipster.tech/creating-an-entity/

• Create a Spring service
● https://www.jhipster.tech/creating-a-spring-service/

• ...

https://www.jhipster.tech/installation/
https://www.jhipster.tech/creating-an-app/
https://www.jhipster.tech/creating-an-entity/
https://www.jhipster.tech/creating-a-spring-service/

	Slide 1
	Slide 2
	Presentation’s goal
	The need
	What is JHipster?
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Thank you all!!
	Slide 16

